Honeycomb-inspired 3D porous material could fight pollutants and viruses

Researchers have developed a new fast and safe method to develop a honeycomb-inspired 3D porous material that has immense potential in filtering that could help us fight pollutants as well as viruses.

Honeycombs and specifically their lattices as well as symmetry of a diatom have been an inspiration for scientists for quite some time now. One recent application is to develop artificial hierarchical porous materials that are stable, yet have a large surface area and the ability to selectively extract materials. It has been difficult however to build these structures at the nanoscale due to their complexity and pattern repeatability across scales from the individual compartments to the whole structure.

A team from KAUST, led by Suzana Nunes, has proposed a simple method that, in just five minutes, can produce a flexible film with a complex hierarchical structure that has repeating patterns of interconnected, regularly shaped pores.

With experts in the Imaging and Characterization Core Lab, the team used the block copolymer called polystyrene-b-poly (tertbutyl acrylate) (PS-b-PtBA) to demonstrate this method. They tested various concentrations of PS-b-PtBA with different solvent mixtures, cast the resulting solutions on glass plates and evaporated them for different time periods to promote the nucleation and growth of cavities with highly porous interconnecting walls. The resulting film was then immersed in water to rinse off the solvent and halt the phase separation.